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ABSTRACT

This study delves into the determination of physical properties of exoplanets detected through

the transit method. Focusing on GJ 1214b, we employ observational data and light curve model-

ing to analyze its orbit, radius, and density. By applying flux normalization and limb darkening

modeling techniques, our investigation reveals significant insights into this exoplanetary system.

We ascertain that GJ 1214b induces a flux drop of 1.9% ± 0.2%, corresponding to a radius of

2.617M⊕± 0.109M⊕. The planet orbits with a semi-major axis of 3.06R⊙± 0.14R⊙ and exhibits

an inclination of 89.95°±0.02°, indicating a nearly horizontal orbit relative to our frame of refer-

ence. Additionally, our model provides limb darkening coefficients of 0.65± 0.10 and 0.32± 0.04.

Utilizing these findings, we calculate a density of 2.48g/cm3±0.23g/cm3 and provide interpreta-

tions of its implications. This comprehensive analysis sheds light on the physical characteristics

of GJ 1214b and contributes to our broader understanding of exoplanetary systems.

1. Introduction

In the vast expanse of interstellar space, the possibility of extraterrestrial life captivates the imaginations

of many. Scientists dedicate years of research to the pursuit of identifying celestial bodies harboring the

conditions conducive to life’s existence. Among the arsenal of techniques employed for this study, transit

detections stand out as a key method with currently the most exoplanets found. In this report, we implement

transit detection to unveil GJ 1214b, an exoplanet nestled within the Ophiuchus constellation (Seager et al.

2007). Orbiting the red dwarf GJ 1214, this celestial body offers a glimpse into the information that simple

light curves hold.

Much like a solar eclipse where the moon obscures the sun, causing daylight to dim, the transit method

aids in the discovery of potential exoplanets by monitoring the decrease in light emitted by a target star. An

exoplanet, akin to Earth, orbits its host star within a consistent time frame known as the orbital period. As

observers, we can use this regularity as it means that during periodic cycles, the exoplanet passes between us

and the star, resulting in a measurable reduction in the star’s brightness. By meticulously observing these

fluctuations over typically day-long intervals, discernible patterns of slight flux drops emerge, indicating the

presence of a transiting exoplanet. A crucial relationship arises when comparing the change in flux, denoted

∆F , to the standard measured flux. This relationship, depicted in Equation 1, facilitates the determination

of the exoplanet’s radius, beginning with the well-documented radius of its host star.

∆F

F
=

(
Rplanet

Rstar

)2

(1)
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To accurately gauge the flux drop, astronomers construct a light curve of the star by amalgamating

numerous observations. Establishing a reliable light curve for GJ 1214 requires the normalization of collected

data, as external influences like moonlight and light pollution subtly skew the overall flux recorded in each

observation. Consequently, multiple reference stars are observed, and their light curves are utilized to

formulate a model depicting the fluctuation in flux throughout the data collection process. By dividing this

model out of each individual light curve, we normalize the data effectively isolating the flux discrepancies

caused solely by the transit of the exoplanet.

The flux calculations utilize aperture photometry to ensure precise incoming flux data with manageable

uncertainties. However, this process encounters slight modifications due to pixel movements between images

caused by the Earth’s rotation throughout the data collection period. To address this, a movement vector

is established by tracking the shifts of a manually selected star, enabling the tracking of any point in the

sky across the image series. Subsequently, numerous reference stars are enlisted, and employing the tracking

method, an aperture and annulus can be delineated around each star in every image.

Once a light curve is compiled, a model can be derived to ascertain the physical attributes of the

observed entity. Notably, limb darkening, which accommodates the variation in intensity of light emitted

by the star’s edges compared to its center due to differing temperatures, warrants particular attention.

The model fitting process necessitates the specification of initial parameters, including the planetary radius,

semi-major axis of the orbit, inclination angle, and two limb darkening coefficients. The inclination angle

references our perspective of the system, acknowledging that the planet’s orbit may appear differently based

on our position in space. An angle of 0° signifies an orbit where the star is never eclipsed, while 90° indicates
a perfectly horizontal transit.

To initiate the radius estimation process, we employ Equation 1 and construct a basic top hat model

to approximate the flux variation, hence inferring the radius of GJ 1214b. Subsequently, the semi-major

axis and inclination values are extracted from the Encyclopedia of Exoplanetary Systems (Cloutier et al.

2021), a comprehensive database containing data on myriad exoplanets. Meanwhile, the limb darkening

coefficients are sourced from the Vizier catalog, a repository brimming with celestial object information (F.

2000). However, since the catalog lacks precise data for our target star, we resort to the nearest available

values, albeit this may marginally impact the final uncertainties.

With these initial parameters, we proceed to fit a limb darkening curve that accommodates temperature

variations across the stellar disc, employing a quadratic model described by Equation 2, where µ =
√

a2−r2

a2 .

Here, we ascertain the planet-to-star radius ratio and normalize the separation to GJ 1214 using Equation 3,

where ω signifies the angular velocity of the planet and i represents the inclination angle between the orbital

plane and the reference plane. The ratio a
Rs

denotes the semi-major axis relative to the star’s radius, both

expressed in solar radii (R⊙).

Iµ
Iµ=1

= 1− c1(1− µ)− c2(1− µ)2 (2)

z(t) =
a

Rs

√[
(sin(ωt))

2
+ (cos(i)cos(ωt))

2
]

(3)

To fit the plot, we determine the coefficients c1 and c2 from the Vizier catalog (F. 2000). Utilizing these

parameters, we derive the inclination, planet radius, and limb darkening coefficients through the following

equations, enabling us to ascertain various physical characteristics of GJ 1214b.
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Collaborating with Maha Macknojia and Umit Uzunboy, this report delves into the determination of

physical parameters of GJ 1214b by scrutinizing variations in its host star’s light curve. We provide a concise

overview of the collected data and its applications in 2, followed by a demonstration of data cleaning and

reduction techniques in 3. Subsequently, we delve into the analysis of the collected data in 4, with ensuing

discussion of results in 5.

2. Data and Observations

Data acquisition was overseen by Ernst de Mooij, utilizing the William Herschel Telescope (WHT)

equipped with an Auxiliary-port CAMera (ACAM). Situated on La Palma in the Canary Islands, Spain, the

WHT has a 4.20-meter primary mirror, enabling optical and infrared observations. The ACAM captures

circular images with an 8.2 arc-minute diameter, each pixel corresponding to approximately 0.25 arc seconds.

The resulting images have dimensions of 2071 by 2148 pixels.

The collected data focuses on the Sloan G filter, designed to capture light in the blue-green spectrum

centered at 480nm, with a width range of 140nm (Fukugita et al. 1996). The dataset comprises 47 flat

files and 26 bias files, pivotal for calibrating the CCD camera and ensuring the fidelity of the collected

data. Utilizing these files, master flats and bias frames are generated to facilitate the flat-fielding process,

correcting for pixel sensitivity variations and eliminating systematic errors. The observations span a duration

of approximately 5 hours, comprising a total of 364 individual observations. This number of observations

will help to show the changes in flux very accurately over the span of one transit.

3. Data Reduction

Before delving into data analysis, it’s imperative to clean the data to mitigate noise and calibrate the

images. Initially, the flat files undergo normalization by determining the median pixel intensity value and

dividing all pixels by this value. Consequently, each file’s median value becomes 1, and a subsequent median

is calculated across the normalized flat arrays. A similar process is applied to the bias files, yielding master

bias and master flat files utilized for flat fielding the raw observation data. By subtracting the bias data and

dividing the difference by the flats, each file’s dataset is calibrated. Additionally, a normalized log scale is

applied to the figures to enhance the visuals of star and background intensities.

Considering the Earth’s rotation, the telescope’s direction gradually deviates over time, despite correc-

tion efforts by the data collection team. This shift results in star movements of up to 10 pixels between

images, necessitating compensation. To address this, a single star’s position change is tracked, and these

movement vectors are subsequently applied to other stars. Furthermore, slight variations in overall brightness

are observed in the images over time, likely due to changing conditions or new sources of light affecting data

collection. To counteract this trend, all light curves are normalized against a master light curve, effectively

accommodating these fluctuations.

3.1. Finding and Tracking Stars

To ensure accurate tracking despite the Earth’s rotation-induced shifts, we select a reference star and

employ a 2D Gaussian centroid function to pinpoint its precise center. Subsequently, as each image is
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processed, the centroid of the chosen star is recalculated, and the resulting movements are recorded as

movement vectors, illustrating the general image shifts. Figure 1 illustrates this process, showcasing the

movements of two stars; 1a demonstrates the overall star movements, while 1b exemplifies the efficacy of the

tracking method across different stars.

Given that the background intensity of the images doesn’t hover near zero but rather averages around

70, it’s crucial for the centroid algorithm to account for this background to prevent significant calculation

discrepancies. Failure to correct for this background intensity could skew the calculations considerably. In

preliminary attempts using simpler centroiding methods, this background was often overlooked, resulting in

poor tracking accuracy and substantial noise accumulation due to an inability to properly center stars for

calculations. Having verified the effectiveness of the 2D Gaussian tracking method through successive star

tracking, the subsequent step involves identifying additional suitable stars to gather light curves from.

(a) Tracking of Star 1

(b) Tracking of Star 2

Fig. 1.—: Movement vectors are calculated over one star and used to follow every other reference star. (a)

Shows the movement of a selected star at pixel coordinate (1130, 470). (b) Shows the movement of a second

star at (1277, 229) after applying the calculated movement vectors from Star 1.
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To identify stars for analysis, we established a minimum intensity threshold of [insert value] and selected

clusters surpassing this threshold. By pinpointing the center pixel of each cluster, we compiled a list of

127 star positions from the initial file. However, some stars exhibited over saturation, hindering accurate

calculations. Thus, we imposed an upper intensity limit of 50000 to exclude these from consideration.

Furthermore, not every identified star proved suitable for subsequent steps, as stars situated too closely

together or near the image edges could yield inaccurate flux approximations and high uncertainties. To

mitigate this, we applied a 35-pixel box around each star, examining its surroundings for discrepancies.

Stars failing this test were excluded, resulting in a final list comprising 99 stars with satisfactory initial

conditions.

3.2. Light Curves

Leveraging the tracking vectors, we tracked each star’s movement and devised aperture and annulus

masks to measure their fluxes. The equations utilized in these calculations are detailed below. To maximize

the signal-to-noise ratio, we experimented with various aperture radii ranging from 4 to 7, determining the

optimal size to minimize unwanted noise. Signal-to-noise ratio was computed by dividing the flux by its

corresponding uncertainty for each chosen radius.

Ibg =
∑

annulus

I(x, y)

Nannulus
(4)

Fstar =
∑

aperture

(I(x, y)− Ibg) (5)

∆F =

√
F

g
+Naperture

(
1 +

π

2

Naperture

Nannulus

)
σ2
bg (6)

In our data processing phase, we meticulously address outliers within individual starlight curves, a

common occurrence due to imperfect tracking or sub optimal aperture radii. Employing a stringent filtering

criterion, we discard points outside the range of 0.97 to 1.02 or with uncertainties surpassing 0.07, ensuring

data integrity. Furthermore, to bolster our outlier detection, we calculate the z-scores for each data point,

considering any exceeding an absolute value of 3.5 as outliers warranting removal. Following outlier removal,

we construct a median model from the refined set of 96 light curves, subsequently evaluating each curve

against this model to ascertain standard deviations. Through iterative selection, we identify 13 stars with

the least variation, culminating in the creation of a final median model, showcased in Figure 2. This model

serves as a robust baseline for normalization, facilitating the removal of most flux variations induced by

external factors upon division with individual light curves.
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Fig. 2.—: The finalized median light curve is found using 13 reference stars which are represented as coloured

scatter points. The black line overlaid on top is the median model curve that is used for normalizing the

transit light curve of GJ 1214 in later steps

3.3. Detecting GJ 1214b Transit

Fig. 3.—: Normalized light curve of GJ 1214 with the binned data set to show cleaner shape in model

Utilizing the ALADIN Sky Atlas, we superimposed the observed data onto sky images centered on the

target star GJ 1214, facilitating a cross-correlation analysis to estimate the star’s pixel location. Employing

the same techniques as with the reference stars, we applied movement vectors and generated a light curve

for GJ 1214. Normalizing the curve by the median model yielded the final light curve of the star, illustrated

in Figure 3. Slight fluctuations around 1 signify minor changes likely stemming from the flux calculations,
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while a distinct dip in the star’s flux by approximately 0.02 strongly suggests the presence of an exoplanet

transiting in front of the star. Binning the light curve aids in visualizing its overall shape.

To determine properties of the exoplanet, two fitting models are employed in this report. Firstly, a simple

top hat fit is utilized to provide a preliminary estimate of the planet’s radius based on the flux difference.

This estimation serves as a foundation for the second model, a limb darkening fit aimed at unveiling the

physical characteristics of GJ 1214b. The top hat model delineates the transit depth and provides a rough

radius value derived from it. Figure 4 depicts the top hat model overlaid on the data. It’s important to note

that this model lacks accuracy in representing the flux change as it doesn’t incorporate ingress and egress

times.

Fig. 4.—: The top hat model is good for determining the maximum change in flux caused by the transit.

The returned dip is determined to be about 0.2

Utilizing the parameters obtained, a quadratic limb darkening model fitting is conducted using the pro-

gram proposed by Mandel & Agol 2002 and Eastman et al. 2012. This program incorporates the inclination,

planetary radius, semi-major axis, and orbital period to plot the approximate trajectory followed by the flux

dip. Employing a quadratic fit offers enhanced analysis compared to a simple linear fit, although further

refinement could be achieved with more robust models.

4. Data Analysis

Parameter Value Uncertainty

Planetary Radius Rp 0.024 R⊙ 0.001 R⊙ (5.49%)

Semi-Major Axis a 3.06 R⊙ 0.14 R⊙ (4.58%)

Inclination i 89.95° 0.02°(1.44%)

Coefficient #1 c1 0.65 0.09 (15.2%)

Coefficient #2 c2 0.32 0.04 (13.8%)

Table 1:: The parameters found from the limb darkening model fitting are listed above. Their uncertainties

are listed first by value and in brackets by percentage of the found value.
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Fig. 5.—: Plot of the model GJ 1214’s drop in flux using a limb darkening model with found coefficients of

c1 and c2 found from Table 1

The plot depicted in Figure 5 illustrates the limb darkening model utilizing the parameters calculated

from Table 1. The line indicates a maximum flux drop of approximately 2% , serving as a reliable estimate for

analysis. The radius value corresponds to roughly 0.23MJupiter ± 0.01MJupiter, meaning it is approximately

two thirds the size of Neptune which is about 0.35MJupiter.

4.1. Physical Properties

Utilizing the obtained parameters, we can ascertain the transit time of GJ 1214b. Firstly, we calculate

the impact parameter, b, using Equation 7, yielding a value of 1.4∗10−4±8∗10−2. This parameter represents

the sky-projected distance between the center of the star and the planet.

Subsequently, the total transit time for GJ 1214b to traverse in front of its star is determined. This

duration encompasses the period from the initiation of flux drop until the flux returns to its normalized state

of 1. The relationship is described by Equation 8, incorporating the total period, semi-major axis, impact

parameter, and the radius of both the planet and the star. We calculate a value of 53.28 minutes for the

total transit time. There was some difficulty finding the uncertainty of this value due to the arc sine in the

equation. Based on the limb darkening plot, it appears that GJ 1214b takes approximately 50 minutes to

complete its transit, meaning the calculated value seems to make physical sense.

b = a cos (i) (7)

tT =
P

π
sin−1

(√
(Rs +Rp)2 + b2

a

)
(8)
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The Exoplanet Database provides a mass for GJ 1214b of 8.2M⊕ ± 0.4M⊕. Utilizing this information,

we calculate the average density of the planet using the well known density formula for a uniform sphere

assuming the planet is a perfect shape. This yields a density of 0.11M⊕
R3

⊕
±0.01M⊕

R3
⊕
, equivalent to 2.48g/cm3±

0.23g/cm3. To assess the validity of our result, we compare it to the Exoplanet Database’s reported value

of 2.18g/cm3 ± 0.12g/cm3. Our answer does appear relatively close and simply holds a higher uncertainty.

4.2. Quality of Data

In Figure 6, we present the residuals of the light curve and the limb darkening model. Upon examination

of the binned data, the plot exhibits satisfactory alignment as the majority of the data points fall within 0.005

of the model, corresponding to flux changes of 0.5%. However, the scattered light points in the background

illustrate the entire light curve data against the model, revealing occasional deviations of up to 2%. This

significant variability underscores the importance of binning the data, as it mitigates the impact of outlier

points on final calculations.

When assessing the uncertainties in the model fittings, a notable discrepancy arises, particularly in

the case of the limb darkening coefficients. The high errors observed likely stem from the variability of

these coefficients, as the values obtained from the Vizier catalog were not precisely matched to GJ 1214b’s

system parameters. To address this issue, we considered the guess parameters as true values, as they were

sourced from reliable sources. By calculating the relative differences between the model parameters and these

true values, we obtained more appropriate uncertainties, as listed in Table 1. However, the limb darkening

coefficient still exhibits a substantial error much higher than the other parameters.

Fig. 6.—: Residual data of the light curve compared to the model fitting. The light red is the original found

light curves residuals while the brighter red represents the binned residual data

The Reduced χ2 value serves as another metric for evaluating the quality of the fit on the data. For the

limb darkening model, it returns a value of 6.8, indicating a poor fit. Despite the data appearing relatively

close, the persistently high uncertainties in the model parameters contribute to this result. Achieving smaller

uncertainties from the model fitting is crucial, and addressing this issue could potentially bring the χ2 value

closer to 1.
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5. Discussion and Conclusion

One potential source of error to consider lies in the calculation of the median light curve. Our approach

involved identifying outliers and determining standard deviations from the model. While this process aims to

remove outliers and stars that may have influenced calculations due to background contamination or radius

size, the z-score limit of 3.5 may be somewhat lenient. It might be beneficial to tighten this boundary slightly,

although caution must be exercised to avoid removing too many points, as this could inflate the significance

of remaining points with larger errors. Additionally, reconsidering the number of light curves used in the

median model calculation may be prudent. Although we selected 13 as the optimal number, given the initial

pool of over 100 stars, conducting one less iterative standard deviation comparison could result in a final

model derived from 25 stars, potentially reducing uncertainties during light curve normalization.

It can also help to have a much larger range of data. Having observations spanning multiple transits will

help remove uncertainty from final results. Any discrepancies found will have less affect on any parameter

estimations and so it will likely help to observe GJ 1214b over several days instead of several hours.

When calculating the density, we assumed the planet to be a perfect sphere, which may not accurately

reflect reality. The fast orbital period of 1.58 days suggests the planet may be more ellipsoidal due to

tidal forces. Consequently, the assumed volume used for density calculations could skew the actual result.

Notably, the density we derived is roughly half that of Earth’s, indicating a composition potentially rich in

water. One proposed composition suggests a significant water content of 75%, along with 22% silicon and

3% iron (Charbonneau et al. 2009). This suggests that GJ 1214b may predominantly consist of water, unlike

Earth, where water primarily exists on the surface.

This report outlines a foundational model for analyzing transiting exoplanets. While useful in deter-

mining size and orbital period, it also illustrates how additional parameters can be derived. When combined

with other detection methods like radial velocity, it may provide further insights into exoplanets, such as

estimating mass and eccentricity. By employing such methods, scientists have detected over 5000 exoplanets

to date, some of which may hold potential for life. Continued research holds the promise of discovering more

planets with conditions conducive to life as our understanding of exoplanetary systems continues to evolve.
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7. Appendix

Code is provided below for general understanding of the process. Certain parts including the plotting

and constant set up is omitted.

7.1. tracking.py

This file is finds the movement vectors from one star and applies it to every reference star in the rest of

the lab in order to track the movement of the image properly

1 x, y = [1130 ,470] #A starting location near an isolated star

2 boxsize = 20 #Box radius

3

4 obs_cube = np.empty([len(target_files), boxsize *2+1, boxsize *2+1])

5 centroids = np.empty([len(target_files), 2])

6

7 for i, f in enumerate(target_files):

8 #Open the file

9 header , im, cof = read_file(f, sky_image=True , verbose=False)

10 #Clean the observation

11 im = clean_image(im, median_dark , median_flat)

12

13 #Make a box around the isolated star:

14 box = im[y-boxsize: y+boxsize+1,

15 x-boxsize: x+boxsize +1]. copy()

16

17 #Find the centroid of the star within that box

18 centroids[i] = centroid(box)

19

20 #Save the box

21 obs_cube[i] = box

22 #%%

23 #Now we can compute the centroid motion vector across the entrie set for this one star

24 plt.figure(figsize =(14, 5))

25 movement_vectors = np.array([ centroids[i] - centroids [0] for i in range(centroids.shape [0])

])

26 plt.figure(figsize =(12 ,5))

27 plt.plot(np.arange(movement_vectors.shape [0]), movement_vectors [:,0],

28 label = 'X Centroid Movement ',
29 color = 'blue')
30 plt.plot(np.arange(movement_vectors.shape [0]), movement_vectors [:,1],

31 label = 'Y Centroid Movement ',
32 color = 'r')
33 plt.plot(np.arange(movement_vectors.shape [0]), np.sqrt(movement_vectors [: ,0]**2 +

movement_vectors [: ,1]**2),

34 label = 'Displacement Magnitude ',

This preprint was prepared with the AAS LATEX macros v5.0.
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35 color = 'k')
36 plt.title("Tracking Movement Vectors of Star 1", size =15)

37 plt.xlabel("Observation Number", size = 14)

38 plt.ylabel("Centroid Change", size = 14)

39 plt.grid(alpha = 0.5)

40 plt.legend(fontsize =12)

41 plt.savefig("C:/Users/User/Desktop/University/ASTRO/AST326/Lab 5/Plots/track_1")

42 plt.show()

7.2. light curves.py

This file focuses on using aperture photometry to measure the flux of reference stars to determine a

median light curve model

1 def get_flux(data , aperture , annulus , gain):

2 data_annulus = data * annulus

3 # background = np.median ((data*annulus)[np.nonzero(data * annulus)]) # bg ~ 71,

tutorial uses average ,

4 background = np.sum(data_annulus) / np.sum(annulus) # bg ~ 72

5 # var_background = np.sum((data * annulus - background)**2)

6 nonzero_annulus = data_annulus[np.nonzero(data_annulus)]

7 var_background = np.mean(( nonzero_annulus - background)**2)

8 flux = np.sum(data * aperture - background * aperture)

9 flux_error = np.sqrt(flux/gain + np.sum(aperture) * (1 + np.sum(aperture)/np.sum(annulus)

* var_background)) # np.pi/2 for median

10 #print(flux , flux_error)

11 return flux , flux_error

12

13

14 def get_positions_and_photometry(x, y):

15 # Containers

16 positions = []

17 fluxes = []

18 flux_errors = []

19 # Loop over each image

20

21 a, b = 0, 364

22 for file , vector_x , vector_y in zip(file_list[a:b], movement_x[a:b], movement_y[a:b]):

23 # Correct our position with our vector correction

24

25 data , _, _ = fn.read_fits(file)

26

27 tracked_x , tracked_y = int(np.round(x + vector_x ,0)), int(np.round(y + vector_y ,0))

28

29 # Make a box around the new position

30 box = data[tracked_y -boxsize: tracked_y+boxsize+1,

31 tracked_x -boxsize: tracked_x+boxsize +1]. copy()

32

33 # The tracking in the last lab isn't perfect so recalculate the centroid of the star

within that box

34 new_box_x , new_box_y = fn.get_centroid(box)

35

36 # Convert to the full image coordinates

37 new_x = tracked_x + new_box_x - boxsize

38 new_y = tracked_y + new_box_y - boxsize
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39 positions.append ((new_x ,new_y))

40

41 # Convert to integers for indexing

42 new_x , new_y = int(np.round(new_x ,0)), int(np.round(new_y ,0))

43

44 # Recenter the box

45 new_box = data[new_y -boxsize: new_y+boxsize ,

46 new_x -boxsize: new_x+boxsize ].copy()

47

48 r = fn.find_radius(box)

49 print(r)

50

51 # Do the aperture photometry

52 aperture = fn.get_aperture(box.shape , (boxsize+new_box_x , boxsize+new_box_y), 5.5)

53 annulus = fn.get_annulus(box.shape , (boxsize+new_box_x , boxsize+new_box_y), (15, 18)

)

54 #fn.show_ds9(box)

55 #fn.show_ds9(box*( aperture+annulus))

56 flux , flux_err = get_flux(box , aperture , annulus , gain =1.16)

57

58 # Store the flux and error

59 fluxes.append(flux)

60 flux_errors.append(flux_err)

61

62 # Normalize the flux and error

63 normalized_flux = fluxes / np.median(fluxes)

64 normalized_flux_err = flux_errors / np.median(fluxes)

65

66 # Return normalized flux and error and positions

67 return normalized_flux , normalized_flux_err , positions

68

69

70 light_curves = np.empty((len(xs), len(normalized_flux)))

71 u_light_curves = np.empty_like(light_curves)

72

73

74 for i in range(0, len(xs)):

75 try:

76 light_curves[i], u_light_curves[i], positions = get_positions_and_photometry(xs[i],

ys[i])

77

78 zscore = mad(normalized_flux)

79

80 indices_to_replace = zscore > 3.5

81

82 light_curves[i][ indices_to_replace] = np.nan

83 except ValueError as ve:

84 print(f"ValueError occurred at iteration {i}: {ve}")

85 except Exception as e:

86 print(f"Exception occurred at iteration {i}: {e}")

87

88 # Calculate the number of rows and columns for the grid layout

89 num_light_curves = len(light_curves)

90 num_rows = int(np.ceil(num_light_curves / 4)) # Adjust the number of columns as needed

91 num_cols = min(num_light_curves , 2) # Maximum of 4 columns per row

92

93 min_value = 0.8

94 max_value = 1.2
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95 max_uncertainty = 0.07 # TODO: Adjust this when the uncertainties are fixed up

96

97 # Function to remove outliers in each light curve

98 def remove_outliers(light_curve , uncertainty):

99 mask_value = np.logical_or(light_curve < min_value , light_curve > max_value)

100 mask_uncertainty = uncertainty > max_uncertainty

101 mask = np.logical_or(mask_value , mask_uncertainty)

102 light_curve[mask] = np.nan # Mask outliers by setting them to NaN

103 uncertainty[mask] = np.nan # Also mask uncertainties for removed points

104 return light_curve , uncertainty

105

106 # Apply outlier removal to each light curve

107 cleaned_light_curves = np.array ([ remove_outliers(light_curve , uncertainty)

108 for light_curve , uncertainty in zip(light_curves ,

u_light_curves)])

109

110 # Remove light curves with fewer than 200 non -NaN values

111 valid_light_curves = cleaned_light_curves [:, 0]

112 valid_uncertainties = cleaned_light_curves [:, 1]

113 valid_light_curves = valid_light_curves[np.sum(~np.isnan(valid_light_curves), axis =1) >=

200]

114 valid_uncertainties = valid_uncertainties[np.sum(~np.isnan(valid_uncertainties), axis =1) >=

200]

115

116 num_light_curves = len(valid_light_curves)

117 print(num_light_curves)

118 # Create a figure and subplots

119

120 num_rows = int(np.ceil(num_light_curves / 4)) # Adjust the number of columns as needed

121 num_cols = min(num_light_curves , 2) # Maximum of 4 columns per row

122

123 # Create a figure and subplots

124 fig , axes = plt.subplots(num_rows , num_cols , figsize =(15, 4* num_rows))

125

126 # Iterate through the light curves and plot each one on a separate subplot

127 for i, ax in enumerate(axes.flat):

128 if i < num_light_curves:

129 ax.plot(valid_light_curves[i])

130 ax.set_title(f"Light Curve {i+1}")

131 ax.set_xlabel("Time")

132 ax.set_ylabel("Flux")

133

134 # Adjust layout to prevent overlapping

135 plt.tight_layout ()

136 plt.show()

137

138 def calculate_std_dev(light_curve , median_model):

139 # Calculate the standard deviation of the flux values of a light curve compared to the

median model

140 std_dev = []

141

142 for lc in light_curve:

143 std_dev.append(np.nanstd(lc - median_model))

144

145 return np.array(std_dev)

146

147 #%%

148 num_iterations = 2
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149 selected_light_curves = valid_light_curves

150 for i in range(0, num_iterations):

151 median_model = np.nanmedian(selected_light_curves , axis =0)

152 std_values = calculate_std_dev(selected_light_curves , median_model)

153

154 sorted_std_array = np.sort(std_values)

155

156 # Step 2: Find the median of the sorted array

157 median_std = np.median(sorted_std_array)

158

159 # Step 3: Keep only the elements with standard deviations less than or equal to the median

160 selected_light_curves = [curve for curve , std in zip(valid_light_curves , std_values) if

std <= median_std]

161

162 print(len(selected_light_curves))

163 final_median_model = np.nanmedian(selected_light_curves , axis =0)

7.3. fitting.py

This is the main code used in the process of modelling fits onto the transit light curve.

1 """ Will bin the median data """

2 def binning(time_ends , num , x, y, y_err):

3 """

4

5 :param time_ends: list , contains the start and end times for a np.linspace array , len(

time_ends) == 2

6 :param num: int , number of steps in the np.linspace array

7 :param x: 1D NumPy array , x values for binning

8 :param y: 1D NumPy array , y values for binning

9 :param y_err: 1D NumPy array , error in y values for binning

10 :return: 3 binned 2D NumPy arrays , x binned , y binned , y_err binned

11 """

12

13 start , stop = time_ends

14 bin_edges = np.linspace(start , stop , num=num)

15 inds = np.digitize(x, bin_edges)

16

17 binned_x = np.zeros(len(bin_edges) - 1)

18 binned_y_mean = np.zeros(len(bin_edges) - 1)

19 binned_y_err = np.zeros(len(bin_edges) - 1)

20

21 for i in range(1, len(bin_edges)):

22 bin_mask = (inds == i)

23 binned_x[i - 1] = np.mean(x[bin_mask ])

24

25 # Calculate weighted mean for y values

26 weights = 1.0 / y_err[bin_mask] # Assuming y_err contains the weights

27 weighted_sum = np.sum(y[bin_mask] * weights)

28 sum_of_weights = np.sum(weights)

29 binned_y_mean[i - 1] = weighted_sum / sum_of_weights

30 binned_y_err[i - 1] = np.mean(y_err[bin_mask ])

31

32 mask = ~np.isnan(binned_y_mean)

33 binned_x = binned_x[mask]

34 binned_y_err = binned_y_err[mask]



– 16 –

35 binned_y_mean = binned_y_mean[mask]

36

37 return binned_x , binned_y_mean , binned_y_err

38

39 """ Top Hat Fitting """

40 colour , fs = "#FF0000", 12

41

42 def top_hat_model(time , F0 , delta):

43 return np.where((time >= t_ingress) & (time <= t_egress), F0 - delta , F0)

44

45 # TODO: FIX THE INPUT VALUES FOR BETTER FITTING

46 # Synthetic data (time and flux)

47 time = julian_dates

48 F0 = 1.0 # Baseline flux of the star

49 delta_true = 0.02 # True transit depth

50 t_ingress = ing # Ingress time

51 t_egress = egr # Egress time

52 flux = top_hat_model(time , F0, delta_true)

53

54 # Fit the top hat model to the synthetic data

55 top_popt , top_pcov = curve_fit(top_hat_model , time , flux , p0=[F0 , delta_true ])

56

57 # Extract the fitted parameters

58 F0_fit , delta_fit = top_popt

59

60 # Compute the planet -to-star radius ratio

61 Rp_Rs = np.sqrt(delta_fit)

62

63 # Known or estimated radius of the host star

64 Rs = 0.204

65

66 # Determine the radius of the exoplanet

67 Rp = Rp_Rs * Rs

68

69 print("Estimated radius of the exoplanet (Meters):", Rp)

70

71 def z_function(t, P, a, i, Rs):

72

73 w = 2*pi/P

74

75 z = (a/Rs)*sqrt((sin(w*t)**2)+(cos(i)**2)*(cos(w*t)**2))

76 return z

77

78 def lc_model(time , R_p , a, i, u1 , u2):

79 # Handle any unit conversions

80

81 # Shift the time to be relative to the time of transit

82 P = period

83 t = time - 100

84 # Calculate z, p0 , and the light curve

85 z = z_function(t, P, a, i, R_s) # Calculate z using z_function

86 p0 = R_p / R_s

87

88 return occultquad(z,u1,u2 ,p0)[0]

89

90

91 # Set up some initial guesses for the model

92 guess_planet_radius = R_p # Solar Radii
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93 guess_semi_major_axis = a # Solar Radii

94 guess_inclin = inc # degrees

95 guess_u1 = 0.554 # +/- 0.015

96 guess_u2 = 0.269 # +/- 0.013

97 orbit_start_time = 100 # seconds , hours , days , just make sure it's consistent!

98

99 guess = np.array([ guess_planet_radius , guess_semi_major_axis , guess_inclin , guess_u1 ,

guess_u2 ])

100 #%%

101 time = julian_dates

102

103 # R_p a i c1 c2

104 limits = np.array ([0.1 , 3, 1, 0.1, 0.1])

105

106 lower_bounds = guess - limits

107 upper_bounds = guess + limits

108

109 # Perfom the curve fitting using the guesses and bounds

110 popt , pcov = curve_fit(lc_model ,

111 xdata = julian_dates ,

112 ydata = star_lc ,

113 sigma = u_star_lc ,

114 p0=[ guess_planet_radius ,guess_semi_major_axis ,guess_inclin ,guess_u1 ,

guess_u2],

115 bounds =( lower_bounds , upper_bounds),

116 maxfev =20000)
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